Optimization Techniques

	r	
Module name	Optimization Techniques	
Module level	Undergraduate	
Code	IF221223	
Courses (if	Optimization Techniques	
applicable)	7.6	
Semester	5/6	
Lecturer	Budi Nugroho, S.Kom, M.Kom (PIC)	
Lanaviana	Yisti Vita Via, S.ST, M.Kom	
Language	Bahasa Indonesia and English	
Relation to	Elective; 5th or 6th semester	
curriculum	Draiget based learning problem based learning and research	based learning
Type of teaching, contact hours	Project-based learning, problem-based learning, and research	-based learning.
Teaching	Lecture, lab works, project	
Methods	Lecture, lab works, project	
Workload	1. Lectures: 3 sks x 50 = 150 minutes (2 hours 30 minutes) per	week
VVOIRIOAU	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hours) per	
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week	oci week.
Credit points	3 credit points (sks)	
Requirements	A student must have attended at least 80% of the lectures to s	it in the exams.
according to the		
examination		
regulations		
Mandatory	Artificial Intelligence	
prerequisites		
Courses	This course consists of concepts, practices, and methods	of optimization
description	techniques on solving classification and clusterisation. Top	
	covered in this course are: Optimization Techniques conce	•
	calculation of evaluation method in Optimization Technic	•
	studies of Optimization Techniques implementations on solvi	ng classification
1	and clustering problems.	
Learning	After completing this module, a student is expected to:	DI 00 DI 010
outcomes and	CO1 Students are able to illustrate the concept and	PLO9,PLO10
their corresponding	common terms in Optimization Techniques, able to discuss examples of Optimization Techniques implementations in,	
PLOs	either from scientific journals or commonly used everyday	
1 203	applications.	
	CO2 Students are able to implement and build every steps	PLO9,PLO10
	on Optimization Techniques method, either by theory or	. 203). 2010
	practice by programming.	
	CO3 Students are able to evaluate and present the	PLO9,PLO10
	performance of classification and clustering methods in	
	Optimization Techniques using performance measurement	
	evaluation methods correctly.	
	evaluation methods correctly.	
Content	Concepts of spatial information system, data forms, data	storage, data
Content	·	
Content	Concepts of spatial information system, data forms, data	web-based SIS

Assessments and	One written Midterm assessment (60 minutes) and one final oral exam (30		
Evaluation	minutes), two short computer-based quizzes, takehome written assignments		
Study and	The final grade in the module is composed of:		
examination	• Two short computer-based quizzes: 15% x 2 = 30%		
requirements	Take-home written assignments: 15%		
and forms of	Written Midterm assessment: 25%		
examination	• Final oral exam: 30%		
	Students must have a final grade of 55.6% or higher to pass.		
Reading List	• A. Khamis, Optimization Algorithms: AI Techniques for Design, Planning,		
	and Control Problems. Shelter Island, NY, USA: Manning, 2024.		
	• S. Chen, K. C. Cheung, and P. Yam, Financial Data Analytics with Machine		
	Learning, Optimization and Statistics. 2024.		
	C. Hudson, High-Performance Computing with Julia: Optimizing Algorithms		
	and Applications. 2024.		
	• E. F. Combarro and S. Gonzalez-Castillo, A Practical Guide to Quantum		
	Machine Learning and Quantum Optimization. 2023.		
	M. Makrehchi, Efficient Algorithm Design: Unlock the power of algorithms		
	to optimize computer programming. Packt Publishing, Oct. 31, 2024. ISBN:		
	978-1835886823. [Online]. Available:		
	https://portal.igpublish.com/iglibrary/obj/PACKT0007631?searchid=17550		
	56595384 xyN4Se7KVAhexeF7VM1G		
	P. M. Pardalos and T. M. Rassias (Eds.), Analysis, Geometry, Nonlinear		
	Optimization and Applications. Singapore: World Scientific Publishing Co.,		
	2023. ISBN: 978-9811261565. [Online]. Available:		
	https://portal.igpublish.com/iglibrary/obj/WSPCB0011233?searchid=1755		
	056745135fi9btlsXh6lY6HavLk6T1		
	020142T22H2DH3VH0HAHAKKAHT		