Numerical Methods

Module name	Numerical Methods		
Module level	Undergraduate		
Code	IF221115		
Courses (if	Numerical Methods		
applicable)			
Semester	3		
Lecturer	Dr. Ir. Kartini, S.Kom, MT. (PIC)		
	Eva Yulia Puspaningrum, S.Kom, M.Kom.		
	Yisti Vita Via, S.ST, M.Kom.		
Language	Bahasa Indonesia and English		
Relation to	Undergraduate degree program; compulsory; 3rd semester		
curriculum			
Type of teaching,	Lectures, < 60 students		
contact hours			
Teaching	Simulation, case study, collaborative learning		
Methods			
Workload	1. Lectures: 3 sks x 50 = 150 minutes (2 hours 30 minutes) per	week.	
	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hours) p	er week.	
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week		
Credit points	3 credit points (sks)		
Requirements	A student must have attended at least 80% of the lectures to s	sit in the exams.	
according to the			
examination			
regulations			
Mandatory	Linear Algebra and Matrices		
prerequisites			
Courses	In this course, students discuss the basic concepts of computation involving		
description	errors and learning computational methods for solving prob		
	nonlinear equations, simultaneous linear equations, diffe	rentiation, and	
	integration.		
Learning	After completing this module, a student is expected to:		
outcomes and	CO1 Students are able to understand concepts of analytical,	PLO3, PLO6	
their	numerical, linear, and nonlinear methods		
corresponding	CO2 Students are able to understand and apply solutions for	PLO3, PLO6	
PLOs	linear and nonlinear equations using a programming		
	language.		
	CO3 Students are able to understand and implement	PLO3, PLO6	
	differentiation and integration concepts using a		
	programming language.		
Content Basic concepts of analytical and numerical methods, difference		ences between	
	analytical and numerical methods, fundamental concepts		
	nonlinear equations, solving linear and nonlinear equation		
	calculations and programming languages, solving differentiation concepts		
	using manual calculations and programming languages,	•	
	concepts using manual calculations and programming languag		
Media employed LCD, whiteboard, websites, books (as references), online meeting, etc.			

Assessments and	One written Midterm assessment (60 minutes) and one final oral exam (30		
Evaluation	minutes), two short computer-based quizzes, takehome written assignments		
Study and	The final grade in the module is composed of:		
examination	• Two short computer-based quizzes: 15% x 2 = 30%		
requirements	• Take-home written assignments: 15%		
and forms of	Written Midterm assessment: 25%		
examination	• Final oral exam: 30%		
Cxarriiriacion	Tillal Graf Chairi. 30%		
	Students must have a final grade of 55.6% or higher to pass.		
Reading List	• Z. Altaç, Numerical Methods for Scientists and Engineers. CRC Press		
	2024.		
	• A. Gilat, V. Subramaniam, Numerical Methods for Engineers and Scientists.		
	Wiley, 2023.		
	J. Pebralia, Metode Numerik. Eureka Media Aksara, 2022.		
	 S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and 		
	Scientists, 5th Edition. McGraw Hill, 2023.		
	 C. Snehashish, Jeswal, S. Kumar, Applied artificial neural network methods 		
	for engineers and scientists: solving algebraic equations. World Scientific		
	Publishing, 2021. ISBN: 9789811230202. [Online]. Available:		
]		
	https://portal.igpublish.com/iglibrary/obj/WSPCB0010327?searchid=1754		
	983373768uAagN07OEyVT5SQo5kOB3		
	J. P. Corriou, Numerical Methods and Optimization: Theory and Practice Section (Section 2015)		
	for Engineers (Springer Optimization and Its Applications, 187. Springer,		
	2022.		
	• Q. Kong, T. Siauw, Alexandre M. Bayen, Python Programming and		
	Numerical Methods. Elsevier, 2021.		
	• Thoyyibah, R. Maulida, A. F. Rizky, Implementasi Phyton pada Metode		
	Numerik. Eureka Media Aksara, 2024.		
1			