Microcontroller

Module name	Microcontroller		
Module level	Undergraduate		
Code	IF221226		
Courses (if	Microcontroller		
applicable)	Nicrocontroller		
Semester	5/6		
Lecturer	Budi Nugroho, S.Kom, M.Kom (PIC) Dr. Basuki Rahmat, S.Si, M.T		
Language	·		
Language	Bahasa Indonesia and English		
Relation to	Elective; 5th or 6th semester		
curriculum	Lantonna (CO atoudanta		
Type of teaching,	Lectures, < 60 students,		
contact hours			
Teaching Methods	project-based learning, problem-based learning		
Workload	1. Lectures: 3 sks x 50 = 150 minutes (2 hours 30 minutes) per		
	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hours) p	oer week.	
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week		
Credit points	3 credit points (sks)		
Requirements	A student must have attended at least 80% of the lectures to s	sit in the exams.	
according to the			
examination			
regulations			
Mandatory	Artificial Intelligence		
prerequisites			
Courses	The Microcontroller Course is a subject that emphasizes the development of		
description	programming skills for a microcontroller system, covering e		
	input devices, programming, to output devices. In this cours		
	expected to build a microcontroller system to address related	issues.	
Learning	After completing this module, a student is expected to:		
outcomes and	CO1 Students are capable to provide a detailed explanation	PLO9,PLO10	
their	of each sub-component of a microcontroller system (C1, A2)		
corresponding		51.50.51.51.5	
PLOs	CO2 Students are capable of implementing programming on a microcontroller (C3, A3)	PLO9,PLO10	
	CO3 Students are capable to build a simple microcontroller	PLO9,PLO10	
	system incorporating both input and output devices within a		
	practical case study (C6, A4, P2)		
Content	The tonics relevant to this course include: concents of curre	nt voltage and	
Content	The topics relevant to this course include: concepts of current, voltage, and power in digital systems; logic gates; fundamental aspects of the Atmega		
	microcontroller (subsections, pin layouts, and pin functions	_	
	reading values from digital input pins and writing values to		
	pins; methods for reading values from analog input pins and v	-	
	analog inputs; concepts of frequency, millis, and delay.	Talacs to	
Media employed	Media employed LCD, whiteboard, websites, books (as references), online meeting, etc.		

Assessments and	One written Midterm assessment (60 minutes) and one final oral exam (30		
Evaluation	minutes), two short computer-based quizzes, take home written assignments		
Study and	The final grade in the module is composed of:		
examination	• Two short computer-based quizzes: 15% x 2 = 30%		
requirements	Take-home written assignments: 15%		
and forms of	Written Midterm assessment: 25%		
examination	• Final oral exam: 30%		
	Students must have a final grade of 55.6% or higher to pass.		
Reading List	• D. Morales, Advanced Microcontroller Programming in C. London, UK:		
	TechPress, 2024.		
	• P. Singh and K. Müller, Hands-On IoT with Embedded C, 2nd ed. Berlin		
	Germany: Springer, 2023.		
	M. Chen, Arduino and Beyond: IoT Development with Microcontrollers		
	and C, Packt, 2024.		
	G. M. Iodice, TinyML Cookbook: Combine machine learning with		
	microcontrollers to solve real-world problems, 2nd ed. Packt Publishing,		
	2023. ISBN: 978-1837637362. [Online]. Available:		
	https://portal.igpublish.com/iglibrary/obj/PACKT0006951?searchid=17550		
	44764526H35QvuTk30lvi~ClKnGvJ		
	Atul Krishna Gupta and Dr. Siva Prasad Nandyala, Deep Learning on		
	Microcontrollers: Learn How to Develop Embedded AI Applications Using		
	TinyML. BPB Publications, Apr. 2023. ISBN: 978-9355518057. [Online].		
	Available:		
	https://portal.igpublish.com/iglibrary/obj/BPB0000426?searchid=1755044		
	764526H35QvuTk30lvi~CIKnGvJ		
	70 10201100 Q4 G1 100141 CINITOV		