Linear Algebra

Module name	Linear Algebra
Module level	Undergraduate
Code	IF221109
Courses (if	Linear Algebra
applicable)	
Semester	2
Lecturer	Dr. Ir. Kartini, S.Kom, MT. (PIC)
	Andreas Nugroho S, S.Kom, M.Kom.
	Henni Endah Wahanani, S.T. M.Kom.
	M. Muharrom A.H, S.Kom., M.Kom
Language	Bahasa Indonesia and English
Relation to	Undergraduate degree program; compulsory; 2nd semester
curriculum	, , , , , , , , , , , , , , , , , , ,
Type of teaching,	Lectures, < 60 students,
contact hours	
Teaching	simulation, case study, collaborative learning
Methods	1 Lectures 2 cke v FO = 1FO minutes /2 hours 20 minutes) manuals
Workload	1. Lectures: 3 sks x 50 = 150 minutes (2 hours 30 minutes) per week. 2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hours) per week.
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week.
Credit points	3 credit points (sks)
Requirements	A student must have attended at least 80% of the lectures to sit in the exams.
according to the	A student must have attended at least 80% of the fectures to sit in the exams.
examination	
regulations	
Mandatory	Computational Mathematics
prerequisites	Comparational Mathematics
Courses	In this course, students learn how to solve the system linear equations (SLE
description	problem using a computational matrix. SLE can be done using Gaussiar
'	elimination, Gauss-Jordan elimination and Cramer's rules. In order to better
	understand the material for the students, it needs to be implemented into a
	particular programming language. Matrix operation problem begins with the
	determinant and continues with the inverse matrix. The determinant can be
	done using Elementary Row Operations (ERO) and cofactor. Inverse matrix
	can be done using ERO, cofactors and Pseudo-inverse. Implementations to
	the program are also required to make students more proficient. In vector
	space, students learn field equations, parametric equations, symmetric
	equations, dot product, cross product, and linear transformations. Basis
	include spans, linear independent, homogeneous linear equations, old basis
	and new basis, the general solution, basis row space, basis column space,
	orthonormal bases, gram schmidt. Next is about eigenvalues, students learr
	about eigenvalue and eigenvector, diagonalization, orthogona
	diagonalization (practice using the program). In order to further explore the
	material, case examples of linear algebra will be given.
Learning	After completing this module, a student is expected to:
outcomes and	CO1 Students are able to understand and apply concepts of PLO5
their	linear equations, matrices, and vectors, and being able to
I	solve related problems accurately and correctly.

corresponding	CO2 Students are able to understand and apply the concents
corresponding PLOs	of Vector Spaces, Linear Transformations, Eigenvalues, and Eigenvectors, and being able to solve related problems accurately and correctly.
Content	System Linear Equations; Gaussian elimination, Gauss-Jordan elimination
Content	and Cramer's rules (using program).
	Matrix and operation, determinant, determinant using Elementary Row
	Operations (ERO) and cofactor.
	Invers matrix using ERO, cofactors and pseudo-inverse.
	Vector space, field equations, parametric equations, symmetric equations, det product, cross product, and linear transformations.
	 dot product, cross product, and linear transformations. Basis, spans, linear independent, homogeneous linear equations, old basis
	and new basis, the general solution, basis row space, basis column space,
	orthonormal bases, gram Schmidt.
	Eigenvalue dan eigen vector, diagonalization, orthogonal diagonalization
	(using program).
	Case example in linear algebra.
Media employed	LCD, whiteboard, websites, books (as references), online meeting, etc.
Assessments and	One written Midterm assessment (60 minutes) and one final oral exam (30
Evaluation	minutes), two short computer-based quizzes, takehome written assignments
Study and	The final grade in the module is composed of:
examination	• Two short computer-based quizzes: 15% x 2 = 30%
requirements and forms of	 Take-home written assignments: 15% Written Midterm assessment: 25%
examination	• Final oral exam: 30%
Cxamination	Tillal Graf Cxalli. 30%
	Students must have a final grade of 55.6% or higher to pass.
Reading List	R. N. Zulfikar, Aljabar Linear. Tangguh Denara Jaya, 2023.
	 S. Axler, Linear Algebra Done Right, 4th edition. Springer, 2024.
	R. K. George, A. Ajayakumar, A Course in Linear Algebra. Springer, 2024.
	• L. Shen, Wang, Haohao, J. Wojdylo, Linear Algebra. Packt Publishing, 2024.
	ISBN: 9781683923763. [Online]. Available:
	https://portal.igpublish.com/iglibrary/obj/PACKT0007444?searchid=17549
	85770684VoYVpZQfRnr~Vhx8hW56k