Digital System

Module name	Digital System		
Module level	Undergraduate		
Code	IF221105		
Courses (if	Digital System		
applicable)			
Semester	2		
Lecturer	Agung Mustika Rizki, S.Kom, M.Kom. (PIC)		
	Andreas Nugroho S, S.Kom, M.Kom.		
	Henni Endah Wahanani, S.T, M.Kom.		
	M. Muharrom A.H, S.Kom., M.Kom		
Language	Bahasa Indonesia and English		
Relation to	Undergraduate degree program; compulsory; 2nd semester		
curriculum			
Type of teaching,	Lectures, < 60 students,		
contact hours			
Teaching	simulation, case study, cooperative learning, problem-based le	earning	
Methods			
Workload	1. Lectures: 3 sks x 50 = 150 minutes (2 hours 30 minutes) per	week.	
	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hours) p	er week.	
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week		
Credit points	3 credit points (sks)		
Requirements	A student must have attended at least 80% of the lectures to sit in the exams.		
according to the			
examination			
regulations			
Mandatory	Computer Architecture		
prerequisites			
Courses	In this course, students learn number systems, describes Boolean function of		
description	digital systems and its simplification using some methods, and explains the		
	function and characteristic of digital system components. It al	-	
	design digital systems, both combinational and sequential system.		
Learning	After completing this module, a student is expected to:		
outcomes and	CO1 Students understand the concept of number systems,	PLO3, PLO5	
their	methods for simplifying Boolean functions, and logic gates.		
corresponding	CO2 Students are able to design both combinational and	PLO3, PLO5	
PLOs	sequential circuits for solving problems.		
	CO3 Students understand the implementation of both	PLO3, PLO5	
	combinational and sequential circuits, including register,		
	counter, and memory		
Content	Number System: Explanation between analog and digital system. Number		
	systems: binary, octal, decimal, hexadecimal, conversion between number		
	system. Coding: 8-4-2-1, BCD, Excess-3, Gray, dan others.		
	Boolean Algebra and simplification of Boolean function: Logic Gate: OR,		
	AND, NOT, XOR, NAND. Truth table, logic function and its implementation		
	using gates. SOP and POS form. Simplification using Boolean algebra & De		
	Morgan theory. Simplification using K-map and Tabulation r		

	Combinational Circuit: Adder, Subtractor, Decoder, Encoder, Multiplexer, Demultiplexer, Decign combinational circuit	
	Demultiplexer. Design combinational circuit.	
	Synchronous Sequential Logic: Basic concept of synchronous sequential	
	circuit, SR Latch. SR, JK, D, and T Flip-Flops, State Diagram, Sequential	
	circuit analysis, design using flip-flops.	
	• Register, Counter and Memory: Register, Register with Parallel Load, Shift	
	Register, Counter, Binary Up-Down Counter, Memory Decoding, memory	
	design, Error Correction, ROM.	
	Algorithmic Satate Machine (ASM): ASM Chart, ASM Block, Timing	
	Sequence, Circuit design using ASM Chart.	
	Table, Flow Table, Race Condition. Example of ASL circuit design,	
	simplification of State and Flow Table	
Media employed	LCD, whiteboard, websites, books (as references), online meeting, etc.	
Assessments and	One written Midterm assessment (60 minutes) and one final oral exam (30	
Evaluation	minutes), two short computer-based quizzes, takehome written assignments	
Study and	The final grade in the module is composed of:	
examination	• Two short computer-based quizzes: 15% x 2 = 30%	
requirements	Take-home written assignments: 15%	
and forms of	Written Midterm assessment: 25%	
examination	• Final oral exam: 30%	
	Students must have a final grade of 55.6% or higher to pass.	
Reading List	• S. Mulyati, BUKU AJAR SISTEM DIGITAL UNTUK TEKNIK INFORMATIKA. CV	
	WIDINA MEDIA UTAMA, 2021.	
	• Z. Fu, A. Barbara, and P. Scupelli, Digital Futures in Human-Computer	
	Interaction: Design Thinking for Digital Transformation. CRC Press, 2025.	
A. Elahi, Computer Systems - Digital Design, Fundamentals of Comp		
	Architecture and ARM Assembly Language, 2 nd edition. Springer, 2022.	
	 V. Taraate, Digital Design Techniques and Exercises: A Practice Book for 	
	Digital Logic Design 1st ed. Springer, 2022.	
	• F. S. Masoodi, Z. S. Masoodi, K. B. Dar, Digital and technological solutions	
	exploring the foundations of digitization. BPB Publications, 2024. ISBN:	
	9789355519153. [Online]. Available:	
	https://portal.igpublish.com/iglibrary/obj/BPB0000607?searchid=1754987	
	877387FLTRNGCyjzQT~w2iG8e4V	