Data Structure

Module name	Data Chrustura		
	Data Structure		
Module level	Undergraduate		
Code	IF221113		
Courses (if	Data Structure		
applicable)			
Semester	3		
Lecturer	Muhammad Muharrom A.H, S.Kom., M.Kom. (PIC)		
	Dr. Eng. Ir. Anggraini Puspita Sari, MT.		
	Fawwaz Ali Akbar, S.Kom, M.Kom.		
Language	Bahasa Indonesia and English		
Relation to	Undergraduate degree program; compulsory; 3rd semester		
curriculum			
Type of teaching,	Lectures, < 60 students		
contact hours			
Teaching	Cooperative learning, project-based learning, problem-based l	learning	
Methods			
Workload	1. Lectures: 3 sks x 50 = 150 minutes (2 hours 30 minutes) per	week.	
	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hours) p	oer week.	
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week		
Credit points	3 credit points (sks)		
Requirements	A student must have attended at least 80% of the lectures to s	sit in the exams.	
according to the			
examination			
regulations			
Mandatory	Programming Algorithm		
prerequisites			
Courses	In this course, students learn several structures and relate	d algorithms to	
description	organize (store, arrange, order) a data collection in a computer so that it can		
	be used efficiently. Data abstraction is discussed in ord	er to define a	
	particular data structure (linear or nonlinear) with some exam	nples. Lab works	
	with C/C++ programming language are set to implement a	ppropriate data	
	structure in some problem solving.		
Learning	After completing this module, a student is expected to:		
outcomes and	CO1 Students are able to abstract data on real problems	PLO3, PLO6	
their	according to the concept of linear data structures (stack,		
corresponding	queue), non-linear (tree, graph) and using C/C++.		
PLOs	CO2 Students are able to implement data access on linear	PLO3, PLO6	
	static and dynamic data structures, array and linked list, to	·	
	solve the problems based on order of data entry (LIFO, FIFO)		
	using C/C++		
	CO3 Students are able to explain terminology in graphs,	PLO3, PLO6	
	explain and apply topological sort, find the shortest distance	,	
	and minimum cost spanning tree in a graph		
	CO4 Students are able to implement hash-tables, to access	PLO3, PLO6	
	data based on key-value data mapping using C/C++.	,	

Content	 Abstract data type: introduction; concepts of storing, arranging and ordering data in linear/non-linear approaches; Linear data structure (stack, queue): push-pop functions in a stack; functions in a queue; empty, full, and top functions for checking the contents of a structure; implementations of stack and queue with array, linked-list and STL for problem solving; Non-linear data structure - tree: functions for insertion, deletion, and searching nodes in a tree; binary search tree; graph; traversing algorithms in tree and graph; implementations of tree and graph with array, linked-list and STL for problem-solving; Sorting algorithms (selection, insertion, bubble, quick, merge) and searching algorithms (binary, hashing) for storing, arranging and ordering data; analysis of algorithms; Hash table data structure 	
Media employed	LCD, whiteboard, websites, books (as references), online meeting, etc.	
Assessments and	One written Midterm assessment (60 minutes) and one final oral exam (30	
Evaluation	minutes), two short computer-based quizzes, takehome written assignments	
Study and	The final grade in the module is composed of:	
examination	• Two short computer-based quizzes: 15% x 2 = 30%	
requirements	Take-home written assignments: 15%	
and forms of	Written Midterm assessment: 25%	
examination	• Final oral exam: 30%	
	Students must have a final grade of 55.6% or higher to pass.	
Reading List	 T. Edet, C# Data Structures: Designing for Organizing, Storing and Accessing Information (Algorithms and Data Structures). Independently Published, 2024. Kanetkar, Yashavant, Data Structures Through C++: Experience Data Structures C++ through animations, 4th Edition. BPB Publications, 2022. M. Mahdi, Data Structures in Depth Using C++: A Comprehensive Guide to Data Structure Implementation and Optimization in C++, 1St edition. Apress, 2025. B. Stroustrup, Programming: Principles and Practice Using C++, Third Edition. Addison-Wesley, 2024. Farrier, John, Data Structures and Algorithms with the C++ STL: a guide for modern C++ practitioners. Packt Publishing, 2024. ISBN: 9781835468555. [Online].	