Computer Vision

Module name	Computer Vision		
Module level	Undergraduate		
Code	IF221221		
Courses (if applicable)	Computer Vision		
Semester	5/6		
Lecturer	Budi Nugroho, S.Kom, M.Kom (PIC)		
	Fetty Tri Anggraeny, S.Kom, M.Kom		
Language	Bahasa Indonesia and English		
Relation to curriculum	Elective; 5th or 6th semester		
Type of teaching,	Lectures, < 60 students,		
contact hours			
Teaching Methods	project-based learning, problem-based learning, research base		
Workload	1. Lectures: 3 sks x 50 = 150 minutes (2 hours 30 minutes) per week.		
	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hours) per week.		
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week		
Credit points	3 credit points (sks)		
Requirements	A student must have attended at least 80% of the lectures to sit in the	exams.	
according to the			
examination			
regulations			
Mandatory	Artificial Intelligence		
prerequisites			
Courses description	The course is designed for students to understand object detection, pattern		
	recognition methods, and the implementation of ACVK (Advanced Computer		
	Vision and Knowledge) in specific focus areas. The learning process		
	using project-based learning, where students work on group projects	•	
	topics. During the project work, the groups grasp the conceptual, me	_	
	implementation, test the methods, and document their findings in the	e form of a	
	scientific journal.		
Learning outcomes	After completing this module, a student is expected to:		
and their	CO1 Students are able to explain the fundamental concepts of	PLO9,	
corresponding PLOs	computer vision and provide examples of computer vision	PLO10	
	applications.		
	CO2 Students are able to explain the image segmentation process,	PLO9,	
	the segmentation process, and the evaluation of segmentation.	PLO10	
	CO3 Students are able to explain image descriptors along with their	PLO9,	
	types and methods.	PLO10	
Content	Basic concepts of computer vision, image segmentation, descriptors	, statistics-	
	based pattern recognition methods, syntax, and neural networks.	,	
Media employed	LCD, whiteboard, websites, books (as references), online meeting, etc.		
Assessments and	One written Midterm assessment (60 minutes) and one final oral exam (30		
Evaluation	minutes), two short computer-based quizzes, takehome written assignments		
Study and examination	The final grade in the module is composed of:		
requirements and	• Two short computer-based quizzes: 15% x 2 = 30%		
forms of examination	• Take-home written assignments : 15%		
	Written Midterm assessment: 25%		

	• Final oral exam: 30%
	Students must have a final grade of 55.6% or higher to pass.
Reading List	 E. Cuevas and A. N. Rodríguez, Image Processing and Machine Learning, Volume 238 pp., 2024. J. Howse and J. Minichino, Learning OpenCV 5 Computer Vision with Python, 470 pp., 2025. N. Chimitt and S. H. Chan, Computational Imaging Through Atmospheric Turbulence, 2024. Anoma, Jean. Mastering Neural Network Computer Vision with TensorFlow and Keras: A practical guide to image use cases like object detection, image segmentation, and text recognition. BPB Publications, 2025. ISBN: 9789365897609. [Online]. Available: https://portal.igpublish.com/iglibrary/obj/BPB0000734?searchid=175498897606 XvX8AGyVudLx8irRw1Um
	 Ayyadevara, V. Kishore, and Yeshwanth Reddy. Modern Computer Vision with PyTorch: A Practical Roadmap from Deep Learning Fundamentals to Advanced Applications and Generative AI, Second Edition. Packt Publishing, 2024. ISBN: 9781803231334. [Online]. Available: https://portal.igpublish.com/iglibrary/obj/BPB0000734?searchid=175498897606 XvX8AGyVudLx8irRw1Um