Algorithm Design and Analysis

Module name	Algorithm Design and Analysis	
Module level	Undergraduate	
Code	IF221216	
Courses (if	Algorithm Design and Analysis	
applicable)		
Semester	5/6	
Lecturer	Budi Nugroho, S.Kom, M.Kom (PIC)	
Language	Bahasa Indonesia and English	
Relation to	Elective; 5 th or 6 th semester	
curriculum		
Type of teaching,	Lectures, < 20 students	
contact hours		
Teaching	Simulation and case-study	
Methods		
Workload	1. Lectures: 3 sks x 50 = 150 minutes (2 hours 30 minutes) per week.	
	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hours) per week.	
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week	
Credit points	3 credit points (sks)	
Requirements	A student must have attended at least 80% of the lectures to sit in the ex	kams.
according to the		
examination		
regulations		
Mandatory	Artificial Intelligence	
prerequisites		
Courses	In this course students are expected to be able to design precise and eff	icient
description	algorithms and implement it into a program aimed at providing solution	ns to
	real-world problems.	
Learning	After completing this module, a student is expected to:	
outcomes and	CO1 Students are able to design precise and efficient PLO9,PLC	010
their	algorithms and implement it into a program aimed at	
corresponding	providing solutions to real-world problems.	
PLOs		
Content	The material studied by students in this course includes: the understand	ing of
	algorithms and their development, important types of algorithms	, the
	framework for algorithm analysis, brute force algorithms, decrease	
	conquer algorithms, divide and conquer algorithms, transform and con	-
	algorithms, greedy algorithms, dynamic programming, iterative algori	thms,
	and limitations of algorithm power and ways to overcome them.	
Media employed	LCD, whiteboard, websites, books (as references), online meeting, etc.	
Assessments and	One written Midterm assessment (60 minutes) and one final oral exam (30	
Evaluation	minutes), two short computer-based quizzes, takehome written assignments	
Study and	The final grade in the module is composed of:	
examination	• Two short computer-based quizzes: 15% x 2 = 30%	
requirements	Take-home written assignments : 15%	
and forms of	Written Midterm assessment: 25%	
examination	• Final oral exam: 30%	
	Students must have a final grade of 55.6% or higher to pass.	

Reading List

- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. Cambridge, MA, USA: MIT Press, 2022.
- A. Chatterjee and U. Kiao, Data Structures and Algorithms Coding Cheatsheet: The DSA Takeover Edition, 2024.
- D. S. Myers, Data Structures and Algorithms in Java: A Project Based Approach, 2024.
- F. Kereki, Data Structures and Algorithms in JavaScript: A Modern Guide Integrating Advanced JavaScript Features with Algorithm Optimization Techniques, 2025.
- M. Blondel and V. Roulet, "The elements of differentiable programming," arXiv preprint arXiv:2403.14606, 2024.
- Hemant Jain, Problems Solving in Data Structures and Algorithms Using C++: A practical approach to competitive programming. BPB Publications, Oct. 28, 2024. ISBN: 978-9365890389. [Online]. Available: https://portal.igpublish.com/iglibrary/obj/BPB0000690?searchid=1755045080260KXc3dzhhit7AWe71">https://portal.igpublish.com/iglibrary/obj/BPB0000690?searchid=1755045080260KXc3dzhhit7AWe71"
- M. Makrehchi, Efficient Algorithm Design: Unlock the power of algorithms to optimize computer programming. Packt Publishing, Oct. 2024. ISBN: 9781835886823. [Online]. Available: https://portal.igpublish.com/iglibrary/obj/PACKT0007631?searchid=1755 045139630D5Ln84ABgPRhpQKmHQzYN